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Abstract. Quantification of emission changes is a prerequi-
site for the assessment of control effectiveness in improv-
ing air quality. However, the traditional bottom-up method
for characterizing emissions requires detailed investigation
of emissions data (e.g., activity and other emission parame-
ters) that usually takes months to perform and limits timely
assessments. Here we propose a novel method to address this
issue by using a response model that provides real-time es-
timation of emission changes based on air quality observa-
tions in combination with emission-concentration response
functions derived from chemical transport modeling. We ap-
plied the new method to quantify the emission changes on
the North China Plain (NCP) due to the COVID-19 pan-
demic shutdown, which overlapped the Spring Festival (also
known as Chinese New Year) holiday. Results suggest that
the anthropogenic emissions of NO2, SO2, volatile organic
compound (VOC) and primary PM2.5 on the NCP were re-
duced by 51 %, 28 %, 67 % and 63 %, respectively, due to the
COVID-19 shutdown, indicating longer and stronger shut-
down effects in 2020 compared to the previous Spring Fes-
tival holiday. The reductions of VOC and primary PM2.5
emissions are generally effective in reducing O3 and PM2.5
concentrations. However, such air quality improvements are
largely offset by reductions in NOx emissions. NOx emission

reductions lead to increases in O3 and PM2.5 concentrations
on the NCP due to the strongly VOC-limited conditions in
winter. A strong NH3-rich condition is also suggested from
the air quality response to the substantial NOx emission re-
duction. Well-designed control strategies are recommended
based on the air quality response associated with the unex-
pected emission changes during the COVID-19 period. In ad-
dition, our results demonstrate that the new response-based
inversion model can well capture emission changes based
on variations in ambient concentrations and thereby illustrate
the great potential for improving the accuracy and efficiency
of bottom-up emission inventory methods.

1 Introduction

Accurate estimation of anthropogenic emissions is crucial for
atmospheric modeling studies and provides the basis for de-
veloping effective air pollution controls (Wang et al., 2010).
A comprehensive emission inventory consists of the emission
rates of primary particulate matter components and gaseous
pollutants and precursors that are allocated over time and
space. These inventories are usually developed using bottom-
up methods that gather detailed information about source ac-
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tivity and other emission parameters (Wang et al., 2011a;
Xing et al., 2013; Li et al., 2017). The challenge is that such
an investigation is costly and time-consuming, and there-
fore the latest emission inventories usually lag current condi-
tions by a year or more. Many studies also apply a top-down
methods to constrain emission estimates using satellite re-
trievals and modeling methods (Tang et al., 2013, 2019; Lu
et al., 2015; Miyazaki et al., 2017; Cao et al., 2018; Zhang
et al., 2018). In general, the traditional top-down inversion
methods use four-dimensional data assimilation (Mendoza-
Dominguez and Russell, 2000) or Kalman filter methods
(Hartley and Prinn, 1993) combined with sensitivity anal-
ysis of chemical transport modeling, like decoupled direct
method in three dimensions (Napelenok et al., 2008) or ad-
joint method (Cao et al., 2018), to optimize the gap be-
tween the simulation and observation through adjusting the
emission from an a priori estimate. The top-down inversion
method can well reflect the change in emissions in a timely
manner and thus efficiently estimate emissions at high spa-
tial and temporal resolution to complement bottom-up inven-
tories. Previous inversion studies have focused on individual
pollutants that can be measured directly; however, studies are
lacking that use top-down methods to estimate emissions of
multiple pollutants, including those that cannot be directly
measured, such as primary fine particular matter (p-PM2.5).

The ongoing coronavirus disease 2019 (COVID-19) pan-
demic has led to 4600 deaths in mainland China (by
24 May 2020, https://news.google.com/covid19/, last access:
24 May 2020) and has resulted in a dramatic curtailment of
routine economic and social activities. The shutdown of hu-
man activities during the COVID-19 pandemic has led to re-
duced pollutant emissions and possibly improved air quality
(Shi and Brasseur, 2020; Wang et al., 2020). Yet according
to ambient concentration measurements, heavy PM2.5 pol-
lution still occurred during the COVID-19 period, and for-
mation of secondary pollutants was actually enhanced in
China (Li et al., 2020; Huang et al., 2020). Some studies
attributed pollution enhancements to atypical weather con-
ditions that are favorable for air pollution formation (Wang
and Su, 2020). Meanwhile, the unexpected reduction of an-
thropogenic emissions due to the COVID-19 shutdown might
vary significantly for different sectors and species. For exam-
ple, emissions from domestic sources might have increased
due to a greater demand for home heating and other essen-
tial consumptions during periods with stay-at-home orders
in effect. Moreover, the coincidence of the COVID-19 shut-
down and the Spring Festival in China resulted in large num-
bers of people confined to their rural or small-city home-
towns, where consumption patterns differ greatly from their
primary residence in megacities. Relative to previous years,
both emissions and meteorological conditions varied simul-
taneously during the 2020 COVID-19 shutdown, and an ac-
curate estimation of the changes in anthropogenic emissions
accounting for meteorological variations is needed to charac-
terize the impacts of COVID-19 on air quality.

Here we propose a novel inversion technique based on
a multi-pollutant nonlinear response model to estimate the
emission changes on the North China Plain (NCP) during
the COVID-19 shutdown. Emission changes for the COVID-
19 period are calculated as the difference between emission
estimates for actual conditions and hypothetical conditions
assuming the shutdown did not occur. The hypothetical emis-
sions are determined by combining top-down emission esti-
mates from before and after the shutdown with estimates of
the temporal variation in emissions from a bottom-up emis-
sion inventory. Additionally, we estimate the change in emis-
sions associated with the Spring Festival holiday in 2019 to
contrast with results for the combined Spring Festival holi-
day and COVID-19 shutdown in 2020. Finally, we evaluate
the impacts on PM2.5 and O3 concentrations of the combined
emission changes and for each emitted species to provide in-
sights for the design of effective control strategies in the fu-
ture.

2 Methods

2.1 Response model to estimate the actual emissions
from observed surface concentrations

The principle of the new response-based inversion model
(hereafter “the response model”) is to adjust the assumed
prior emissions such that concentration predictions match
observations. Different from previous top-down methods
that apply sensitivity based optimization, this study adopted
emission-concentration response functions which provide
real-time estimates of the concentrations under various emis-
sion scenarios. Therefore it can make the adjustment of emis-
sions match with the observation more straightforwardly by
avoiding the calculation of the sensitivities. Meanwhile, the
natural linkage exists in air pollutants like PM2.5 and O3
since both pollutants have contributions from common pre-
cursors (NOx and volatile organic compound, VOC), simi-
lar atmospheric diffusion–advection transport, and chemical
oxidation reactions. The advantage of the new method is its
ability to represent the nonlinearity of PM2.5 and O3 response
to the change in their precursor emissions. Thus, it can assim-
ilate both pollutants simultaneously by keeping the natural
linkage. In addition, to address the “ill-posedness” inversion
problem, we took advantage of all available observations for
multiple pollutants and constrained the adjustment of emis-
sions at provincial scale rather than at each single grid cell.
That means we only change total emissions of each province
but keep spatial and temporal variation the same as that in
the a priori emissions. Such a design makes the new method
have a small sensitivity to the change of observation sites
due to the use of prior knowledge of the spatial distribution
of emissions, which is particularly useful for certain period
when observations are not always available across the whole
region. However, the new method has limited ability to as-
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Figure 1. The response modeling framework for adjusting the emis-
sions (Eqs. 1–7 are equations used to adjusted emissions, which are
detailed in the text).

similate concentrations at the edge of the control region and
may suffer uncertainties in the spatial and temporal varia-
tions which are unable to be adjusted by this method (Xing
et al., 20201). Nevertheless, since the study mainly focuses
on the relative change of total emissions over the NCP re-
gion due to the COVID-19 rather than improving the baseline
emissions, our new method is thus more suitable to address
such a specific purpose.

The core element of the inversion method is a nonlinear
response surface model (RSM) that represents the emission-
concentration response functions. The framework of the re-
sponse model is illustrated in Fig. 1. We conduct chemical
transport model simulations using prior emissions to get the
original simulated concentrations of six pollutants (i.e., NO2;
O3; SO2; PM2.5; sulfate, SO2−

4 ; and nitrate, NO−3 ), as well as
the response functions derived from the RSM (Xing et al.,
2011; Wang et al., 2011b; Xing et al., 2017, 2018). We then
adjust the total emission ratio of five pollutants (i.e., NO2,
VOC, SO2, NH3 and primary PM2.5) in five provinces of
the NCP (i.e., Beijing, Tianjin, Hebei, Shandong and Henan)
to estimate the updated simulated concentrations to match
with the observations. Since the RSM was originally built
based on the 3-D chemical transport model through multiple-
emission scenarios by changing total emissions at controlled
regions, both local source and non-local transport and trans-
formation have been considered in the assimilation.

Based on our previous knowledge of emission-
concentration response relationships, we first adjust
NOx emissions such that RSM predictions match NO2
observations (see Eq. 1), since NO2 concentrations have a
strong linear relationship with NOx emissions (Xing et al.,
2017).

E′NOx = rNOx ×E
∗

NOx = E
∗

NOx ×
Co

NO2

Cs
NO2

, (1)

whereE′NOx is the adjusted NOx emissions;E∗NOx is the prior
NOx emissions; rNOx is the adjustment ratio for NOx emis-
sions; Co

NO2
is the observed NO2 concentrations; and Cs

NO2
is the simulated NO2 concentrations.

Next, we adjust VOC emissions such that RSM predictions
match observed O3 concentrations, since O3 concentrations
are solely determined by VOC emissions after NOx emis-
sions are determined in the previous step. The adjusted VOC
emission ratio (i.e., rVOC = E

′

VOC/E
∗

VOC) is determined by
solving the following equation:

1O3 =
(
Co

O3
−Cs

O3

)
= RSMO3(rNOx , rVOC), (2)

where E′VOC is the adjusted VOC emissions; E∗VOC is the
prior VOC emissions; 1O3 is the difference between ob-
served O3 concentrations (Co

O3
) and simulated O3 concen-

trations (Cs
O3

); and RSMO3 is the response function of O3
concentrations to NOx and VOC emissions.

Although SO2 concentrations are linearly related to SO2
emissions, the chemical transport model overestimates SO2
concentrations and underestimates SO2−

4 concentrations due
to large uncertainties in simulating the rapid conversion of
SO2 to SO2−

4 during haze episodes (Zhang et al., 2019). To
address this deficiency, we adjusted the SO2 emissions us-
ing the observed SO2−

4 /SO2 ratio such that the RSM predic-
tions matched both the observed SO2 and SO2−

4 concentra-
tions. Since SO2−

4 concentrations are quite linearly related to
SO2 emissions when NH3 emissions are at moderate levels
(Wang et al., 2011b), we assume that the unaccounted for
SO2-to-SO2−

4 conversion pathway contributes to differences
in the observed and simulated SO2−

4 /SO2 ratios. Under this
assumption, simulated SO2 concentrations are overestimated
by the same ratio (α) that secondary SO2−

4 (Cs
s−SO4

) concen-
trations are underestimated (see Eqs. 3 and 4). The primary
SO2−

4 concentration (Cs
p−SO4

) was removed from the total

SO2−
4 concentration in these calculations, because primary

SO2−
4 is directly emitted and not related to the conversion of

SO2 to SO2−
4 (see Eq. 4).

Co
SO2
=

1
α
× rSO2 ×C

s
SO2

(3)

Co
SO4
= α× rSO2 ×C

s
s−SO4

+Cs
p−SO4

(4)

α =

(
Co

SO2

Co
SO4
−Cs

p−SO4

/
Cs

SO2

Cs
SO4

)1/2

(5)

The adjusted SO2 emission ratio (rSO2 ) is estimated by taking
the ratio of observed SO2 (Co

SO2
) to simulated SO2 (Cs

SO2
)

multiplied by α, which accounts for the model deficiency in

https://doi.org/10.5194/acp-20-14347-2020 Atmos. Chem. Phys., 20, 14347–14359, 2020



14350 J. Xing et al.: Quantifying the emission changes and associated air quality impacts during COVID-19

simulating the rapid conversion of SO2 to SO2−
4 . For simpli-

fication, here we estimate the α value at a domain and tempo-
ral averaged level (i.e., identical across the space and time),
though such a ratio might vary with time and space. Also the
primary SO4 concentrations were assumed to be correct. The
α is smaller than 1 because the observed SO2−

4 /SO2 is usu-
ally greater than the simulation. The inclusion of the α may
help the response model avoid the underestimation of SO2
emissions.

Using the adjusted NOx , VOC and SO2 emissions from
previous steps, we next adjusted NH3 emissions such that
RSM predictions of NO−3 concentrations matched observa-
tions:

1NO−3 =
(
Co

NO3
−Cs

NO3

)
= RSMNO3(rNOx , rVOC, rSO2 , rNH3), (6)

where rNH3 = E
′
NH3

/E∗NH3
, E′NH3

is the adjusted NH3 emis-
sions, and E∗NH3

is the prior NH3 emissions.
After updating the emissions of the four gaseous precur-

sors, the secondary portion of PM2.5 was correspondingly
determined, including the secondary organic aerosol con-
tributed by the VOC emissions. Finally, the primary PM2.5
emissions were adjusted to provide agreement between sim-
ulated and observed total PM2.5 concentrations:

1PM2.5 =
(
Co

PM2.5
−Cs

PM2.5

)
= RSMPM2.5(rNOx , rVOC, rSO2 , rNH3 , rp−PM2.5), (7)

where rp−PM2.5 = E
′
p−PM2.5

/E∗p−PM2.5
, E′p−PM2.5

is the ad-
justed primary PM2.5 emissions, and E∗p−PM2.5

is the prior
primary PM2.5 emissions.

The prior emissions used here were based on a bottom-
up inventory developed for 2017. Since our study focuses on
periods in 2019 and 2020, we first use the response model
to adjust the 2017 emission inventory to match the observa-
tions during two study periods. The first study period was
defined as 1 January–31 March 2019 to capture changes in
activity due the Spring Festival. The second study period was
defined as the same 3 months in 2020 to capture the COVID-
19 shutdown on the NCP, which overlapped the 2020 Spring
Festival holiday. We defined three subperiods within the 3
months in each year as pre-shutdown (Period 1), shutdown
(Period 2) and post-shutdown (Period 3). The days selected
for subperiods differed in 2019 and 2020 due to differences in
the dates and lengths of the shutdowns. For 2019, we defined
Period 1 as 1–29 January (29 d); Period 2 as 30 January–
18 February (20 d), which is a week before and after the
2019 lunar New Year holidays; and Period 3 as 19 February–
31 March (41 d). For 2020, we defined Period 1 as 1–22 Jan-
uary (22 d); Period 2 as 23 January–5 March (33 d), which is
from the date that Chinese authorities began targeting trans-
portation shutdowns until all human activities began recov-
ering in early March (http://www.gov.cn/index.htm, last ac-
cess: 24 May 2020); and Period 3 as 6–31 March (26 d). The

stage-averaged emissions are corrected by applying a unified
change ratio to each pollutant emission at each stage, and the
temporal variations such as hourly profiles are kept the same
as those in the a priori estimates.

The RSM was developed using ambient concentrations
from simulations with the Community Multiscale Air Qual-
ity (CMAQ, version 5.2.1) model, which incorporated mete-
orological fields from the Weather Research and Forecast-
ing (WRF, version 3.8) model. The WRF-CMAQ system
was configured as in our previous studies, and model perfor-
mance for meteorological variables and pollutant concentra-
tions was evaluated (Ding et al., 2019). The RSM was devel-
oped following the same design as our previous study (Xing
et al., 2018), in which the polynomial response functions for
O3, PM2.5 and PM2.5 components were fitted by 40 brute-
force CMAQ simulations. Specifically, deep-learning tech-
nology was used to fit response surfaces for the 3 months
in 2019 and 2020 using CMAQ simulations for baseline
and zero-out emissions conditions (see Fig. 2 in Xing et al.,
2020b). The response surfaces were developed using year-
specific meteorology based on WRF simulations to account
for differences in meteorological conditions between 2019
and 2020.

Measurements of ambient concentrations of NO2, SO2,
O3 and PM2.5 were obtained from the China National Envi-
ronmental Monitoring Centre (http://106.37.208.233:20035/,
last access: 24 May 2020). Measurements of PM2.5 chemical
components, including NO−3 and SO2−

4 , were provided by
the urban PM data analysis platform in the 2+ 26 cities of
Beijing–Tianjin–Hebei and surrounding regions (http://106.
37.181.120:9011/bfs, last access: 24 May 2020). All mon-
itoring data were given as hourly averaged concentrations
at the monitoring sites shown in Fig. 2. As in our previ-
ous RSM studies, daily daytime O3 concentrations were ana-
lyzed based on afternoon averages (12:00–18:00 local time),
and PM2.5 concentrations were based on daily 24 h averages
(Xing et al., 2018). Only data at monitoring sites that covered
the 90 % of entire period are considered. Since the monitors
sample pollutants at discrete locations and measurements are
not available for all days at all sites, provincial average con-
centrations were used to facilitate adjustments domain-wide
for all days in each study period. The provincial average con-
centrations were calculated using spatially and temporally
matched simulated and observed values.

2.2 Hypothetical emissions without shutdown effects

The actual emissions can be derived using observed con-
centrations and the response model. However, hypothetical
emissions under the assumption of no shutdown effects are
also needed to estimate the changes in emissions due to
the 2019 and 2020 shutdowns. We estimate the hypotheti-
cal emissions using the temporal profiles of sectoral emis-
sions from the bottom-up inventory in combination with the
derived (actual) emissions for the pre- and post-shutdown
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Figure 2. Simulation domain and location of observation sites (colored area: five provinces of the North China Plain; red dots: surface
monitor sites for NO2, SO2, O3 and PM2.5; blue dots: monitor sites for PM2.5 chemical components).

periods. We assume that the Spring Festival shutdowns in
2019 have negligible influence on emissions during the pe-
riods before and after the shutdown (i.e., Period 1 and Pe-
riod 3, respectively), while the COVID-19 pandemic in 2020
might have had lag effects after the shutdown due to reduced
economic activity or relaxed pollutant controls. However,
we concentrate our analysis of COVID-19 impacts on emis-
sions and air quality in the official shutdown period only (Pe-
riod 2). The hypothetical no-shutdown emissions for Period 2
(noted as Period 2H) are estimated using ratios of emissions
for Period 2 and Period 1 and 3 based on the temporal pro-
file (i.e., reflect the monthly variation across a year) of the
bottom-up inventory which only reflects the natural evolu-
tion of emissions across a year for each sector. It is roughly
close to the temporally averaged ratios between Periods 1
and 3, and the exact values depend on the number of days
covering in each period. This approach develops hypothet-
ical emissions following the typical variation in emissions
without shutdown effects. Note that we use the temporal pro-
file to determine the change in Period 2 emissions relative to
Period 1 and 3, and so emissions from both Period 1 and 3
are needed to estimate Period 2H emissions.

The emission changes due to the COVID-19 shutdown can
be estimated by taking the difference of emissions in Pe-
riod 2, derived from the response model, and emissions in
Period 2H, estimated from emissions in Period 1 and 3 using
the temporal profile of bottom-up sectoral emissions. The im-
pacts of emission changes during the COVID-19 shutdown
on PM2.5 and O3 concentrations are then estimated with
the RSM. In addition to the combined impacts of emission
changes from multiple species, we estimate the impacts of
individual pollutant emissions on PM2.5 and O3. Due to the
nonlinearity of emission-concentration response functions,
the impacts of individual pollutant emissions can vary sig-
nificantly when other pollutant emissions are changing si-

multaneously (Xing et al., 2018). To simplify the evalua-
tion, we define an incremental method for analyzing the in-
dividual pollutant impacts in this study by adding incremen-
tal changes in pollutant emissions to the previous simulation
in the following order: NOx , VOC, NH3, SO2 and primary
PM2.5, as described in Table 1. The impacts of individual
pollutant emissions on O3 and PM2.5 concentrations are then
estimated from the difference between the incrementally ad-
justed simulation and the previous one. Note that this ap-
proach is an approximation, and the impacts of individual
pollutants could change if a different order is used.

3 Results

3.1 Emission changes due to the shutdown

Using the response model, the daily emissions of NOx , VOC,
NH3, SO2 and primary PM2.5 on the NCP are estimated for
three periods in 2019 and 2020, as summarized in Fig. 3 and
detailed in Table 2 by provinces.

For Period 1 before the activity disruptions, the emissions
of NOx , SO2 and VOC on the NCP decreased by 11 %, 25 %
and 8 % between 2019 and 2020, respectively. These reduc-
tions reflect the progress of air pollution controls between
2019 and 2020 and demonstrate the ability of the model to
capture emission changes from routine air pollution control
actions. The p-PM2.5 emissions also significantly decreased
in Beijing–Tianjin–Hebei provinces but increased in Shan-
dong and Henan. The NH3 emissions did not change during
this 2-year period, since NH3 is not considered in current
policies.

Activity reductions occurred in Period 2 in both 2019 and
2020, although the shutdown due the Spring Festival in 2019
is much shorter than the COVID-19 shutdown in 2020. The
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Table 1. Sensitivity analysis for quantifying the impacts of individual pollutant emission changes on air quality.

No. Emission Objective Noted

Sim-1 All pollutants are used as the hypothetical emis-
sions of Period 2H

To estimate the hypothetical concentrations
without COVID impacts

oSIM

Sim-2 Same as Sim-1 except NOx emissions are up-
dated to actual emissions in Period 2

To estimate the impacts of NOx emission
changes on O3 and PM2.5 based on the differ-
ence between Sim-2 and Sim-1

1NOx

Sim-3 Same as Sim-2 except VOC emissions are up-
dated to actual emissions in Period 2

To estimate the impacts of VOC emission
changes on O3 and PM2.5 based on the differ-
ence between Sim-3 and Sim-2

1VOC

Sim-4 Same as Sim-3 except NH3 emissions are up-
dated to actual emissions in Period 2

To estimate the impacts of NH3 emission
changes on PM2.5 based on the difference be-
tween Sim-4 and Sim-3

1NH3

Sim-5 Same as Sim-4 except SO2 emissions are up-
dated to actual emissions in Period 2

To estimate the impacts of SO2 emission
changes on PM2.5 based on the difference be-
tween Sim-5 and Sim-4

1SO2

Sim-6 Same as Sim-5 except primary PM2.5 emissions
are updated to actual emissions in Period 2

To estimate the impacts of primary PM2.5 emis-
sion changes on PM2.5 based on the difference
between Sim-6 and Sim-5

1p-PM2.5

Table 2. Daily emissions of five pollutants in NCP provinces based on the response model (unit: ktd−1). p-PM2.5: primary PM2.5.

2019 Period 1 (29 d, 1 Jan to 29 Jan) Period 2 (20 d, 30 Jan to 18 Feb) Period 3 (41 d, 19 Feb to 31 Mar)

NOx SO2 NH3 VOC p-PM2.5 NOx SO2 NH3 VOC p-PM2.5 NOx SO2 NH3 VOC p-PM2.5

Beijing 0.49 0.07 0.20 0.69 0.12 0.26 0.05 0.19 0.20 0.01 0.48 0.05 0.23 0.94 0.16
Tianjin 0.65 0.17 0.15 0.92 0.05 0.42 0.17 0.15 0.24 0.04 0.79 0.21 0.25 1.37 0.15
Hebei 5.64 2.01 1.18 3.67 1.97 3.47 1.62 1.27 1.43 1.51 5.95 1.90 2.77 6.26 1.92
Shandong 7.35 3.21 1.34 8.58 0.76 4.45 2.88 1.52 2.41 0.88 6.90 3.45 3.54 9.59 1.19
Henan 5.34 1.49 1.31 4.08 1.54 3.04 1.31 1.74 0.71 1.84 4.46 1.84 4.27 4.46 1.33

NCP 19.47 6.96 4.17 17.94 4.43 11.65 6.03 4.87 5.00 4.28 18.58 7.45 11.07 22.62 4.76

2020 Period 1 (22 d, 1 Jan to 22 Jan) Period 2 (33 d, 23 Jan to 5 Mar) Period 3 (26 d, 6 Mar to 31 Mar)

NOx SO2 NH3 VOC p-PM2.5 NOx SO2 NH3 VOC p-PM2.5 NOx SO2 NH3 VOC p-PM2.5

Beijing 0.38 0.04 0.20 0.65 0.01 0.23 0.03 0.20 0.27 0.01 0.28 0.04 0.24 0.70 0.09
Tianjin 0.64 0.12 0.15 0.87 0.02 0.44 0.12 0.17 0.44 0.03 0.71 0.18 0.30 1.20 0.10
Hebei 5.28 1.34 1.18 3.12 1.73 3.15 1.16 1.54 1.92 0.81 4.97 1.67 3.49 4.72 0.75
Shandong 6.57 2.55 1.34 8.02 0.85 3.28 2.25 1.88 2.44 0.16 5.87 3.57 4.52 8.44 0.14
Henan 4.50 1.15 1.31 3.84 2.26 1.13 1.14 1.31 0.64 0.16 4.09 2.13 5.49 3.13 0.10

NCP 17.37 5.19 4.17 16.51 4.88 8.23 4.69 5.10 5.71 1.17 15.93 7.59 14.03 18.18 1.19
12020− 2019 −11 % −25 % 0 % −8 % 10 % −29 % −22 % 5 % 14 % −73 % −14 % 2 % 27 % −20 % −75 %

emissions of NOx , SO2 and p-PM2.5 in Period 2 in 2020 are
substantially lower than in 2019 (29 %, 22 % and 73 %, re-
spectively). The decreases of NOx and p-PM2.5 for Period 2
between 2019 and 2020 are larger than the decreases for Pe-
riod 1, which did not experience shutdowns. Such results
suggest that the COVID-19 shutdown in 2020 had longer
and stronger impacts on emissions than the Spring Festival
shutdown in 2019. Interestingly, emissions of NH3 and VOC
increased significantly (by 5 % and 14 %) from 2019 to 2020
in Period 2. These changes are likely due to the temporal
variations of emissions of both species, which are enhanced

in warmer months due to stronger evaporation. Period 2 in
2020 extended farther into the spring (until early March) than
Period 2 in 2019 and thus led to increased evaporative emis-
sions of NH3 and VOC. These results also demonstrate the
importance of developing emissions with high temporal res-
olution.

For Period 3 after the shutdown, the decreases of NOx
emissions (14 %) are similar to those in Period 1 (11 %),
indicating the recovery of the activity. However, the emis-
sions of VOC and p-PM2.5 are much lower in Period 3 in
2020 compared to that in 2019, suggesting lag effects af-
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Figure 3. Daily emissions during pre-shutdown (Period 1, blue),
shutdown (Period 2, red) and post-shutdown (Period 3, green) peri-
ods in 2019 and 2020. Period 2H (grey) is the hypothetical emis-
sions without reduced activity during the 2019 holiday or 2020
COVID-19 shutdown; the red number indicates the percent change
in emissions due to the shutdown in Period 2.

ter the COVID-19 shutdown in 2020. In contrast, the small
increases of SO2 emissions in 2020 (2 %) might be associ-
ated with the extended central heating activity through the
end of March in 2020, compared with mid-March in 2019.
Higher NH3 emissions in Period 3 in 2020 than 2019 are
also due to the larger coverage of warm days in Period 3
of 2020. NH3 emissions show the strongest monthly vari-
ations among all pollutants (Fig. 3). Similarly, increases in
VOC emissions are also driven by the change of meteoro-
logical conditions (i.e., the higher air temperature in March
leads to a larger evaporative emissions), though the growth of
VOC emissions from Period 1 to Period 3 is reduced by the
COVID-19 shutdown in 2020. Such results also demonstrate
that the response model can capture the temporal variations
of emissions even in cases where emissions are strongly cou-
pled with meteorological conditions.

The influence of the shutdown is estimated as the differ-
ence in emissions between Period 2H (hypothetical emis-
sions without shutdown effects) and Period 2 (actual emis-
sions), as shown in Fig. 3 (grey and red bars respectively) and
detailed in Table 3 by NCP province. Due to the COVID-19
shutdown in 2020, emissions of NOx , VOC and PM2.5 de-

creased substantially by 51 %, 67 % and 63 %, respectively.
SO2 emissions also decreased by 28 %, while NH3 emissions
experienced very small increases (+2 %) which might be as-
sociated with increased activities in rural areas (e.g., poten-
tial NH3 emission sources like stool burning) as many people
relocated from megacities to small towns or the countryside.
Compared to the effects of the Spring Festival in 2019, the
COVID-19 shutdown led to greater reductions in NOx , SO2
and PM2.5 emissions. The smaller VOC reduction in 2020
compared to 2019 might be due to the difference in tempo-
ral coverage of Period 2 in the 2 years (i.e., there were more
warm days in Period 2 in 2020). Note that the hypothetical
emissions in Period 2H are estimated based on the assump-
tion of no shutdown effects in both Period 1 and Period 3.
Therefore the reduction of those pollutant emissions in 2020
might be even larger considering the lag effects of COVID-
19.

3.2 The shutdown effects on ambient concentrations

Using the RSM, we predicted concentrations based on the
updated emissions from the response-based inversion model.
In general, the simulated concentrations based on the ad-
justed emissions matched well with the observed concentra-
tions, as shown in Fig. 4 for NCP averages and detailed by
province in Figs. S1–S12 in the Supplement. More impor-
tant, during the shutdown period in both years, the simula-
tions using adjusted emissions without considering shutdown
influences significantly overestimate the NO2 concentrations
in 2019 and 2020 by 61 % and 81 %, respectively. The high
biases in 2019 and 2020 are reduced to within 1 % in the
simulation with consideration of shutdown effects (Fig. 4a).
To evaluate the performance of assimilation, we also con-
ducted the cross validation by using 50 % observation sites
for estimating the emission ratio to be applied on the remain-
ing 50 % of observation sites for testing. The performance of
cross validation is examined, suggesting quite similar results
with that using all observation sites as shown in Fig. 4. The
estimated percent changes in emissions due to the shutdown
in Period 2 from cross validation are also close to that using
all observation sites, as shown in Fig. S13.

The results for O3 are quite interesting, as simulated O3
concentrations are close to observations in both simula-
tions with and without consideration of shutdown influences
(Fig. 4b). The apparent insensitivity of O3 concentrations to
emission changes during the shutdown can be explained by
the opposite response of O3 to its two precursors, NOx and
VOC. In Fig. 5a, we compare the response of O3 concentra-
tions for two NOx and VOC emission change pathways start-
ing from the hypothetical emissions for no-shutdown condi-
tions (black symbol in Fig. 5a). Since NOx emissions clearly
decreased due to the shutdown, the O3 concentrations would
increase if VOC emissions remained constant (following the
green line to the green symbol in Fig. 5a). Yet the simulation
without consideration of VOC emission changes would re-
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Table 3. The shutdown impacts on the emission of five pollutants in NCP provinces. p-PM2.5: primary PM2.5.

2019 NOx SO2 NH3 VOC p-PM2.5

ktd−1 % ktd−1 % ktd−1 % ktd−1 % ktd−1 %

Beijing −0.23 −47 % −0.01 −21 % 0.00 0 % −0.56 −73 % −0.15 −93 %
Tianjin −0.30 −41 % −0.02 −10 % 0.00 0 % −0.95 −80 % −0.07 −62 %
Hebei −2.33 −40 % −0.34 −17 % 0.00 0 % −3.54 −71 % −0.51 −25 %
Shandong −2.67 −37 % −0.46 −14 % 0.00 0 % −6.78 −74 % −0.10 −10 %
Henan −1.85 −38 % −0.48 −27 % 0.00 0 % −3.39 −83 % 0.39 27 %

NCP −7.38 −39 % −1.31 −18 % 0.00 0 % −15.23 −75 % −0.43 −9 %

2020 NOx SO2 NH3 VOC p-PM2.5

ktd−1 % ktd−1 % ktd−1 % ktd−1 % ktd−1 %

Beijing −0.10 −30 % −0.01 −18 % 0.00 2 % −0.39 −59 % −0.07 −85 %
Tianjin −0.24 −35 % −0.03 −18 % 0.00 2 % −0.60 −58 % −0.04 −59 %
Hebei −1.98 −39 % −0.31 −21 % 0.03 2 % −1.89 −50 % −0.43 −35 %
Shandong −2.95 −47 % −0.75 −25 % 0.04 2 % −5.80 −70 % −0.31 −66 %
Henan −3.16 −74 % −0.76 −40 % 0.03 2 % −3.10 −83 % −1.10 −87 %

NCP −8.42 −51 % −1.85 −28 % 0.10 2 % −11.77 −67 % −1.95 −63 %

sult in a high bias of simulated O3 concentrations compared
to the observations by 49 % in 2019 and 29 % in 2020. The
low observed O3 concentrations during Period 2 in both years
indicates that VOC emission reductions must have occurred
to maintain the suppressed O3 level (following the red line
to the red symbol in Fig. 5a). Consistent with this interpreta-
tion, the simulated O3 concentrations agree well with obser-
vations (e.g., normalized mean bias, NMB< 3 %) when both
NOx and VOC emission reductions are represented.

The substantial reduction of NOx emissions also resulted
in noticeable decreases in NO−3 concentrations (black and
green lines in Fig. 4c). However, the low bias in NO−3 predic-
tions cannot be readily mitigated by adjusting the NH3 emis-
sions, because the substantial decreases in NOx emissions
associated with the shutdown result in strong NH3-rich con-
ditions, where NO−3 concentrations are less sensitive to NH3
emissions increases. The response of NO−3 concentrations to
pathways of NOx and NH3 emission changes is depicted in
Fig. 5b (SO2 and VOC emissions are also changing simul-
taneously with NOx). A larger decrease in simulated (from
that with no consideration of shutdown influences) than ob-
served NO−3 concentrations is associated with the NOx emis-
sion reductions, but the change of NH3 emissions can hardly
increase the NO−3 concentrations under such strong NH3-rich
conditions. Therefore, the model predicted no NH3 changes
in 2019, but very small increases of NH3 emissions (+2 %)
in 2020 due to the increased activities in rural areas, which
slightly reduced the NO−3 low biases (NMB from −12 % to
−11 %).

The large reduction in SO2 emissions estimated with the
response model during the 2020 shutdown considerably re-
duced the high biases in simulated SO2 and SO2−

4 concentra-

tions (Fig. 4d–f). However, the SO2−
4 biases are still consid-

erable after the emission adjustment because a large fraction
of SO2−

4 might come from primary sources, which need fur-
ther investigation especially for its contribution to p-PM2.5.

Agreement between the simulated and observed PM2.5
concentrations also improves when accounting for the reduc-
tions in primary PM2.5 emissions estimated with the response
model in both years (Fig. 4g). Another interesting finding
is that the simulated PM2.5 concentrations with considera-
tion of all emission changes due to the shutdown (red line in
Fig. 4g) are quite similar to PM2.5 predictions without con-
sideration of the shutdown impacts (black line in Fig. 4g).
The same behavior is evident for O3 concentrations (red and
black lines in Fig. 4b). As discussed above, the reductions in
emissions of multiple species during the shutdown had com-
pensating influences on air quality, and the overall effects of
the emission changes on O3 and PM2.5 concentrations were
neutralized to a relatively small level.

3.3 Impacts of individual emission changes from the
shutdown on O3 and PM2.5 concentrations

To further investigate the individual impacts of emission
changes of each pollutant on O3 and PM2.5 concentrations,
we conducted a sensitivity analysis by sequentially adding
each incremental emission change into the model system and
then calculating the associated changes in O3 and PM2.5 con-
centrations. By incrementally adding the impacts of emission
changes of five pollutants (1NOx , 1VOC, 1NH3, 1SO2
and 1p-PM2.5), the concentrations change from the origi-
nal simulation, without consideration of shutdown impacts
(noted as oSIM, shown as grey bar in Fig. 6), and ultimately
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Figure 4. Comparison of the simulated and observed average concentrations on the NCP. The percentage numbers indicate the normalized
mean biases in hypothesis and actual simulations respectively for Period 2. Blue dots: observations; black dots: simulations using adjusted
emission with no consideration of shutdown influences; red dots: simulations using adjusted emission with consideration of shutdown in-
fluences; green dots: simulations using adjusted emission with consideration of shutdown influences without VOC for O3, NH3 for NO−3 ,

SO2 for SO2−
4 , primary PM2.5 for PM2.5; grey dots: original simulations without assimilation; the regional average concentrations were

calculated using spatially and temporally matched simulated and observed values; unit: µgm−3.
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Figure 5. Implication of emission changes from the O3 and NO−3 response isopleths during shutdowns. The axes indicate emission ratios
relative to the prior emissions; black symbol: adjusted emission ratios with no consideration of shutdown; red symbol: adjusted emission
ratios with consideration of shutdown; green symbol: adjusted emission ratios without considering simultaneous VOC changes for O3, and
NH3 changes for NO3; background color: O3 and NO−3 concentrations, µgm−3.

reaching observed levels (noted as OBS, shown as narrow
blue bars in Fig. 6). One thing that should be noted is that
we scaled the individual impact of emission changes based
on the ratio of observation to the adjusted simulation after
considering overall impacts, to eliminate the small discrep-
ancy between the observations and the adjusted simulations
after considering the overall impacts. Therefore, the overall
changes in concentrations due to the shutdown can be re-
flected by the difference between the observation (OBS) and
simulation with no consideration of shutdown (oSIM).

For O3, the reduction of NOx emissions leads to a sig-
nificant enhancement of O3 (see 1NOx) due to the VOC-
limited regime in winter (Xing et al., 2019), while such an
O3 enhancement has been largely or completely mitigated
thanks to the simultaneous reduction of VOC emissions (see
1VOC) in both 2019 and 2020. This behavior is particu-
larly evident in Henan and Shandong provinces, which ex-
perienced substantial VOC reductions during the shutdown
(Table 3). Such benefits from simultaneous VOC controls
also occurred for PM2.5 concentrations. Compared with O3,
the changes in PM2.5 concentrations are more complex to
interpret due to the influence of emission changes for SO2
(1SO2), NH3 (1NH3) and p-PM2.5 (1p-PM2.5) in addi-

tion to NOx and VOC. Results suggest that the reductions
of p-PM2.5 emissions tended to favor PM2.5 decreases, while
the 1SO2 and 1NH3 emission changes have negligible in-
fluence. Overall, reductions in p-PM2.5 and VOC emissions
helped mitigate potential PM2.5 concentration enhancements
in most NCP provinces. Similar findings are suggested in
Hang et al. (2020), who observed enhanced secondary pol-
lution during the COVID-19 period. The air quality impacts
from the unexpected controls during the COVID-19 shut-
down suggest that strengthened controls on p-PM2.5 emis-
sions and well-balanced reductions in NOx and VOC emis-
sions would be an effective strategy for further improving air
quality on the NCP (Xing et al., 2018).

4 Summary and conclusion

In summary, this study developed a response-based inver-
sion modeling framework and applied it to characterize the
emission changes and associated air quality impacts during
the 2019 Spring Festival and the 2020 COVID-19 pandemic
shutdown. Our results indicate that the response model can
effectively adjust the assumed prior emissions such that air
quality predictions match well with observed concentrations.
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Figure 6. Contributions to the changes of O3 and PM2.5 concentrations during Period 2. OBS: observation; oSIM: no consideration of
shutdown; 1NOx : impacts due to the change of NOx emissions; 1VOC: impacts due to the change of VOC emissions; 1NH3: impacts
due to the change of NH3 emissions; 1SO2: impacts due to the change of SO2 emissions; 1p-PM2.5: impacts due to the change of primary
PM2.5 emissions.

The model also captures the temporal variations of emis-
sions associated with changes in meteorological conditions.
The model may suffer some uncertainties from deficiencies
in model chemical mechanisms (e.g., conversion of SO2 to
SO2−

4 ), as well as the quality of prior emissions and limited
coverage of observations. Difficulties are also found in es-
timating the NH3 emission changes under strong NH3-rich
conditions by using the current inversion method based on
the concentration of PM chemical components. However,
with the continued growth in observational datasets from
both surface monitors and satellite retrievals, improvements
in knowledge of atmospheric science and development of ad-
vanced assimilation technologies, the new response-based in-
version model has great potential to further improve the ac-
curacy and efficiency of emission inventory updates. The im-
portance of reliable bottom-up inventories for defining prior
emissions by sector, combined with the ability of the top-
down inversion model to rapidly adjust emissions for con-
sistency with observations, demonstrates how bottom-up and
top-down emissions modeling methods are complementary.

The response model was applied to the investigation of
emission changes during the COVID-19 shutdown. The
emission changes were estimated by comparing emissions

for actual conditions with emissions for hypothetical con-
ditions assuming that the shutdown did not occur. Emission
levels during the COVID-19 shutdown period were estimated
by applying the temporal profiles of sectoral emissions from
the bottom-up inventory. These estimates may suffer some
uncertainties associated with the temporal profiles and the as-
sumption of no shutdown impacts during the post-shutdown
period. Our results suggest that the shutdowns in 2019 and
2020 had considerable impacts on air pollutant emissions.
Longer and stronger impacts are found in 2020 due to the
COVID-19 pandemic compared to the Spring Festival of the
previous year. The anthropogenic emissions of NO2, SO2,
VOC and primary PM2.5 on the NCP were reduced by 51 %,
28 %, 67 % and 63 %, respectively, due to the COVID-19
shutdown in 2020. The estimated ratio might be slightly un-
derestimated considering the lag effects after the COVID-19
shutdown. We also found that emission changes associated
with the shutdown periods had limited impacts on surface
O3 and PM2.5 concentrations due to compensating effects of
emission changes in different pollutants. Based on our anal-
ysis, careful controls on NOx emission sources on the NCP
are recommended in combination with simultaneous controls
on VOC and NH3 sources. Such a comprehensive strategy
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would minimize the potential negative impacts on air quality
of NOx emission reductions during VOC-limited conditions
in winter. This study also illustrates that air quality improve-
ments do not necessary follow from precursor emission re-
ductions, and multi-pollutant nonlinear response models are
therefore critical tools for representing the nonlinear relation-
ship between emissions and concentrations in designing ef-
fective control strategies.
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